ELECTRICAL PRINCIPLES AND PRACTICE – LEVEL 4

CONTENTS

SECTION A: PURPOSE OF THE SUBJECT ASSESSMENT GUIDELINES

SECTION B: ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

1 Assessment in the National Certificates (Vocational)
2 Assessment framework for vocational qualifications
 2.1 Internal continuous assessment (ICASS)
 2.2 External summative assessment (ESASS)
3 Moderation of assessment
 3.1 Internal moderation
 3.2 External moderation
4 Period of validity of internal continuous assessment (ICASS)
5 Assessor requirements
6 Types of assessment
 6.1 Baseline assessment
 6.2 Diagnostic assessment
 6.3 Formative assessment
 6.4 Summative assessment
7 Planning assessment
 7.1 Collecting evidence
 7.2 Recording
 7.3 Reporting
8 Methods of assessment
9 Instruments and tools for collecting evidence
10 Tools for assessing student performance
11 Selecting and/or designing recording and reporting systems
12 Competence descriptions
13 Strategies for collecting evidence
 13.1 Record sheets
 13.2 Checklists

SECTION C: ASSESSMENT IN ELECTRICAL PRINCIPLES AND PRACTICE

1 Schedule of assessment
2 Recording and reporting
3 Internal assessment of Subject Outcomes in Electrical Principles and Practice - Level 4
4 Specification for external assessment in Electrical Principles and Practice – Level 4
 4.1 Integrated summative assessment task (ISAT)
 4.2 National Examination
SECTION A: PURPOSE OF THE SUBJECT ASSESSMENT GUIDELINES

This document provides the lecturer with guidelines to develop and implement a coherent, integrated assessment system for Electrical Principles and Practice in the National Certificates (Vocational). It must be read with the National Policy Regarding Further Education and Training Programmes: Approval of the Documents, Policy for the National Certificates (Vocational) Qualifications at Levels 2 to 4 on the National Qualifications Framework (NQF). This assessment guideline will be used for National Qualifications Framework Levels 2-4.

This document explains the requirements for the internal and external subject assessment. The lecturer must use this document with the Subject Guidelines: Electrical Principles and Practice to prepare for and deliver Electrical Principles and Practice. Lecturers should use a variety of resources and apply a range of assessment skills in the setting, marking and recording of assessment tasks.

SECTION B: ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

1 ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

Assessment in the National Certificates (Vocational) is underpinned by the objectives of the National Qualifications Framework (NQF). These objectives are to:

• Create an integrated national framework for learning achievements.
• Facilitate access to and progression within education, training and career paths.
• Enhance the quality of education and training.
• Redress unfair discrimination and past imbalances and thereby accelerate employment opportunities.
• Contribute to the holistic development of the student by addressing:
 ▪ social adjustment and responsibility;
 ▪ moral accountability and ethical work orientation;
 ▪ economic participation; and
 ▪ nation-building.

The principles that drive these objectives are:

• Integration
 To adopt a unified approach to education and training that will strengthen the human resources development capacity of the nation.

• Relevance
 To be dynamic and responsive to national development needs.

• Credibility
 To demonstrate national and international value and recognition of qualification and acquired competencies and skills.

• Coherence
 To work within a consistent framework of principles and certification.

• Flexibility
 To allow for creativity and resourcefulness when achieving Learning Outcomes, to cater for different learning styles and use a range of assessment methods, instruments and techniques.

• Participation
 To enable stakeholders to participate in setting standards and co-ordinating the achievement of the qualification.

• Access
 To address barriers to learning at each level to facilitate students’ progress.
Progression
To ensure that the qualification framework permits individuals to move through the levels of the national qualification via different, appropriate combinations of the components of the delivery system.

Portability
To enable students to transfer credits of qualifications from one learning institution and/or employer to another institution or employer.

Articulation
To allow for vertical and horizontal mobility in the education system when accredited pre-requisites have been successfully completed.

Recognition of Prior Learning
To grant credits for a unit of learning following an assessment or if a student possesses the capabilities specified in the outcomes statement.

Validity of assessments
To ensure assessment covers a broad range of knowledge, skills, values and attitudes (SKVAs) needed to demonstrate applied competency. This is achieved through:
 - clearly stating the outcome to be assessed;
 - selecting the appropriate or suitable evidence;
 - matching the evidence with a compatible or appropriate method of assessment; and
 - selecting and constructing an instrument(s) of assessment.

Reliability
To assure assessment practices are consistent so that the same result or judgment is arrived at if the assessment is replicated in the same context. This demands consistency in the interpretation of evidence; therefore, careful monitoring of assessment is vital.

Fairness and transparency
To verify that no assessment process or method(s) hinders or unfairly advantages any student. The following could constitute unfairness in assessment:
 - Inequality of opportunities, resources or teaching and learning approaches
 - Bias based on ethnicity, race, gender, age, disability or social class
 - Lack of clarity regarding Learning Outcome being assessed
 - Comparison of students’ work with other students, based on learning styles and language

Practicability and cost-effectiveness
To integrate assessment practices within an outcomes-based education and training system and strive for cost and time-effective assessment.

2 ASSESSMENT FRAMEWORK FOR VOCATIONAL QUALIFICATIONS
The assessment structure for the National Certificates (Vocational) qualification is as follows:

2.1 Internal continuous assessment (ICASS)
Knowledge, skills values, and attitudes (SKVAs) are assessed throughout the year using assessment instruments such as projects, tests, assignments, investigations, role-play and case studies. The internal continuous assessment (ICASS) practical component is undertaken in a real workplace, a workshop or a “Structured Environment”. This component is moderated internally and externally quality assured by Umalusi. All internal continuous assessment (ICASS) evidence is kept in a Portfolio of Evidence (PoE) and must be readily available for monitoring, moderation and verification purposes.

2.2 External summative assessment (ESASS)
The external summative assessment is either a single or a set of written papers set to the requirements of the Subject Learning Outcomes. The Department of Education administers the theoretical component according to relevant assessment policies.
A compulsory component of external summative assessment (ESASS) is the integrated summative assessment task (ISAT). This assessment task draws on the students’ cumulative learning throughout the year. The task requires integrated application of competence and is executed under strict assessment conditions. The task should take place in a simulated or “Structured Environment”. The integrated summative assessment task (ISAT) is the most significant test of students’ ability to apply acquired knowledge.

The integrated assessment approach allows students to be assessed in more than one subject with the same integrated summative assessment task (ISAT).

External summative assessments will be conducted annually between October and December, with provision made for supplementary sittings.

3 MODERATION OF ASSESSMENT

3.1 Internal moderation
Assessment must be moderated according to the internal moderation policy of the Further Education and Training (FET) college. Internal college moderation is a continuous process. The moderator’s involvement starts with the planning of assessment methods and instruments and follows with continuous collaboration with and support to the assessors. Internal moderation creates common understanding of Assessment Standards and maintains these across vocational programmes.

3.2 External moderation
External moderation is conducted by the Department of Education, Umalusi and, where relevant, an Education and Training Quality Assurance (ETQA) body according to South African Qualifications Authority (SAQA) and Umalusi standards and requirements.

The external moderator:

- monitors and evaluates the standard of all summative assessments;
- maintains standards by exercising appropriate influence and control over assessors;
- ensures proper procedures are followed;
- ensures summative integrated assessments are correctly administered;
- observes a minimum sample of ten (10) to twenty-five (25) percent of summative assessments;
- gives written feedback to the relevant quality assuror; and
- moderates in case of a dispute between an assessor and a student.

Policy on inclusive education requires that assessment procedures be customised for students who experience barriers to learning, and supported to enable these students to achieve their maximum potential.

4 PERIOD OF VALIDITY OF INTERNAL CONTINUOUS ASSESSMENT (ICASS)
The period of validity of the internal continuous assessment mark is determined by the National Policy on the Conduct, Administration and Management of the Assessment of the National Certificates (Vocational).

The internal continuous assessment (ICASS) must be re-submitted with each examination enrolment for which it constitutes a component.

5 ASSESSOR REQUIREMENTS
Assessors must be subject specialists and should ideally be declared competent against the standards set by the ETDP SETA. If the lecturer conducting the assessments has not been declared a competent assessor, an assessor who has been declared competent may be appointed to oversee the assessment process to ensure the quality and integrity of assessments.

6 TYPES OF ASSESSMENT
Assessment benefits the student and the lecturer. It informs students about their progress and helps lecturers make informed decisions at different stages of the learning process. Depending on the intended purpose, different types of assessment can be used.
6.1 Baseline assessment
At the beginning of a level or learning experience, baseline assessment establishes the knowledge, skills, values and attitudes (SKVAs) that students bring to the classroom. This knowledge assists lecturers to plan learning programmes and learning activities.

6.2 Diagnostic assessment
This assessment diagnoses the nature and causes of learning barriers experienced by specific students. It is followed by guidance, appropriate support and intervention strategies. This type of assessment is useful to make referrals for students requiring specialist help.

6.3 Formative assessment
This assessment monitors and supports teaching and learning. It determines student strengths and weaknesses and provides feedback on progress. It determines if a student is ready for summative assessment.

6.4 Summative assessment
This type of assessment gives an overall picture of student progress at a given time. It determines whether the student is sufficiently competent to progress to the next level.

7 PLANNING ASSESSMENT
An assessment plan should cover three main processes:

7.1 Collecting evidence
The assessment plan indicates which Subject Outcomes and Assessment Standards will be assessed, what assessment method or activity will be used and when this assessment will be conducted.

7.2 Recording
Recording refers to the assessment instruments or tools with which the assessment will be captured or recorded. Therefore, appropriate assessment instruments must be developed or adapted.

7.3 Reporting
All the evidence is put together in a report to deliver a decision for the subject.

8 METHODS OF ASSESSMENT
Methods of assessment refer to who carries out the assessment and includes lecturer assessment, self-assessment, peer assessment and group assessment.

LECTURER ASSESSMENT	The lecturer assesses students’ performance against given criteria in different contexts, such as individual work, group work, etc.
SELF-ASSESSMENT	Students assess their own performance against given criteria in different contexts, such as individual work, group work, etc.
PEER ASSESSMENT	Students assess another student’s or group of students’ performance against given criteria in different contexts, such as individual work, group work, etc.
GROUP ASSESSMENT	Students assess the individual performance of other students within a group or the overall performance of a group of students against given criteria.

9 INSTRUMENTS AND TOOLS FOR COLLECTING EVIDENCE
All evidence collected for assessment purposes is kept or recorded in the student’s PoE.

The following table summarises a variety of methods and instruments for collecting evidence. A method and instrument is chosen to give students ample opportunity to demonstrate the Subject Outcome has been attained. This will only be possible if the chosen methods and instruments are appropriate for the target group and the Specific Outcome being assessed.
METHODS FOR COLLECTING EVIDENCE

<table>
<thead>
<tr>
<th>Observation-based (Less structured)</th>
<th>Task-based (Structured)</th>
<th>Test-based (More structured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observation</td>
<td>Assignments or tasks</td>
<td>Examinations</td>
</tr>
<tr>
<td>Class questions</td>
<td>Projects</td>
<td>Class tests</td>
</tr>
<tr>
<td>Lecturer, student, parent discussions</td>
<td>Investigations or research</td>
<td>Practical examinations</td>
</tr>
<tr>
<td></td>
<td>Case studies</td>
<td>Oral tests</td>
</tr>
<tr>
<td></td>
<td>Practical exercises</td>
<td>Open-book tests</td>
</tr>
<tr>
<td></td>
<td>Demonstrations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Role-play</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Interviews</td>
<td></td>
</tr>
</tbody>
</table>

Assessment instruments

- Observation
- Class questions
- Lecturer, student, parent discussions
- Assignments or tasks
- Projects
- Investigations or research
- Case studies
- Practical exercises
- Demonstrations
- Role-play
- Interviews
- Examinations
- Class tests
- Practical examinations
- Oral tests
- Open-book tests

Assessment tools

- Observation sheets
- Lecturer's notes
- Comments
- Checklists
- Rating scales
- Rubrics
- Marks (e.g. %)
- Rating scales (1-7)

Evidence

- Focus on individual students
- Subjective evidence based on lecturer observations and impressions
- Open middle: Students produce the same evidence but in different ways.
- Open end: Students use same process to achieve different results.
- Students answer the same questions in the same way, within the same time.

10 TOOLS FOR ASSESSING STUDENT PERFORMANCE

Rating scales are marking systems where a symbol (such as 1 to 7) or a mark (such as 5/10 or 50%) is defined in detail. The detail is as important as the coded score. Traditional marking, assessment and evaluation mostly used rating scales without details such as what was right or wrong, weak or strong, etc.

Task lists and **checklists** show the student what needs to be done. These consist of short statements describing the expected performance in a particular task. The statements on the checklist can be ticked off when the student has adequately achieved the criterion. Checklists and task lists are useful in peer or group assessment activities.

Rubrics are a hierarchy (graded levels) of criteria with benchmarks that describe the minimum level of acceptable performance or achievement for each criterion. Using rubrics is a different way of assessing and cannot be compared to tests. Each criterion described in the rubric must be assessed separately. Mainly two types of rubrics, namely holistic and analytical, are used.

11 SELECTING AND/OR DESIGNING RECORDING AND REPORTING SYSTEMS

The selection or design of recording and reporting systems depends on the purpose of recording and reporting student achievement. Why particular information is recorded and how it is recorded determine which instrument will be used.

Computer-based systems, for example spreadsheets, are cost and time effective. The recording system should be user-friendly and information should be easily accessed and retrieved.

12 COMPETENCE DESCRIPTIONS

All assessment should award marks to evaluate specific assessment tasks. However, marks should be awarded against rubrics and not be simply a total of ticks for right answers. Rubrics should explain the competence level descriptors for the skills, knowledge, values and attitudes (SKVAs) that a student must demonstrate to achieve each level of the rating scale.

When lecturers or assessors prepare an assessment task or question, they must ensure that the task or question addresses an aspect of a Subject Outcome. The relevant Assessment Standard must be used to create the rubric to assess the task or question. The descriptions must clearly indicate the minimum level of attainment for each category on the rating scale.
13 STRATEGIES FOR COLLECTING EVIDENCE
A number of different assessment instruments may be used to collect and record evidence. Examples of instruments that can be (adapted and) used in the classroom include:

13.1 Record sheets
The lecturer observes students working in a group. These observations are recorded in a summary table at the end of each project. The lecturer can design a record sheet to observe students' interactive and problem-solving skills, attitudes towards group work and involvement in a group activity.

13.2 Checklists
Checklists should have clear categories to ensure that the objectives are effectively met. The categories should describe how the activities are evaluated and against what criteria they are evaluated. Space for comments is essential.

SECTION C: ASSESSMENT IN ELECTRICAL PRINCIPLES AND PRACTICE

1 SCHEDULE OF ASSESSMENT
At NQF levels 2, 3 and 4, lecturers will conduct assessments as well as develop a schedule of formal assessments that will be undertaken in the year. All three levels also have an external examination that accounts for 50 percent of the total mark. The marks allocated to assessment tasks completed during the year, kept or recorded in a PoE account for the other 50 percent.

The PoE and the external assessment include practical and written components. The practical assessment in Electrical Principles and Practice must, where necessary, be subjected to external moderation by Umalusi or an appropriate Education and Training Quality Assurance (ETQA) body, appointed by the Umalsu Council in terms of Section 28(2) of the General and Further Education and Training Quality Assurance Act, 2001 (Act No. 58 of 2001).

2 RECORDING AND REPORTING
Electrical Principles and Practice, as is the case for all the other Vocational subjects, is assessed according to five levels of competence. The level descriptions are explained in the following table.

<table>
<thead>
<tr>
<th>Scale of Achievement for the Vocational component</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATING CODE</td>
</tr>
<tr>
<td>-------------</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

The programme of assessment should be recorded in the Lecturer’s Portfolio of Assessment for each subject. The following at least should be included in the Lecturer’s Assessment Portfolio:

- A contents page
- The formal schedule of assessment
- The requirements for each assessment task
- The tools used for each assessment task
- Recording instrument(s) for each assessment task
- A mark sheet and report for each assessment task

The college must standardise these documents.
The student’s PoE must include at least:

- A contents page
- The assessment tasks according to the assessment schedule
- The assessment tools or instruments for the task
- A record of the marks (and comments) achieved for each task

Where a task cannot be contained as evidence in the PoE, its exact location must be recorded and it must be readily available for moderation purposes.

The following minimum units of internal assessment must serve as a guide for Electrical Principles and Practice

<table>
<thead>
<tr>
<th>NO. OF UNITS</th>
<th>ASSESSMENT</th>
<th>COVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Formal written tests</td>
<td>1 or more completed topics</td>
</tr>
<tr>
<td>1</td>
<td>Internal written exam</td>
<td>All completed topics</td>
</tr>
<tr>
<td>3</td>
<td>Practical assessments</td>
<td>Must cover the related subject outcomes</td>
</tr>
</tbody>
</table>
ASSESSMENT OF ELECTRICAL PRINCIPLES AND PRACTICE
LEVEL 4
3 INTERNAL ASSESSMENT OF SUBJECT OUTCOMES IN ELECTRICAL PRINCIPLES AND PRACTICE - LEVEL 4

Topic 1: Fundamentals of Electricity

<table>
<thead>
<tr>
<th>SUBJECT OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 State and use essential electrically related knowledge.</td>
</tr>
<tr>
<td>Range: includes but not limited to:</td>
</tr>
<tr>
<td>a. All work done for NQF level 2 and 3.</td>
</tr>
<tr>
<td>b. Additional work mentioned here.</td>
</tr>
<tr>
<td>c. Series RLC circuits and all the associated calculations but exclude resonance.</td>
</tr>
<tr>
<td>d. Calculations involving power in a balanced 3-phase system.</td>
</tr>
<tr>
<td>e. Instrument connections such as ammeter and voltmeter (with/without shunt and multiplier resistors and current and potential transformers), wattmeter (single and 3-phase connections), frequency meter, megger and tong tester.</td>
</tr>
<tr>
<td>f. Electrical Components such as geysers, stoves, thermostats, simmerstats, prepaid meters, energy control units (ripple relay and radio controlled)</td>
</tr>
</tbody>
</table>

 Exclude parallel RLC circuits and all the associated calculations

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>The fundamentals of electricity are understood.</td>
<td>Identify, rate and use fuses and circuit breakers by selecting the most appropriate one for the application.</td>
</tr>
<tr>
<td>Explain, with the aid of sketches, the operating principle of isolators/disconnectors, lightning arrestors, no-volt and overload protection devices.</td>
<td></td>
</tr>
<tr>
<td>Explain the operating principle of the thermal magnetic, magnetic, oil dashpot and bi-metal type circuit breakers.</td>
<td></td>
</tr>
<tr>
<td>Sketch and explain the operating principle of electrical components and appliances (geysers, stoves, thermostats, simmerstats, prepaid meters, energy control units (ripple relay and radio controlled)).</td>
<td></td>
</tr>
<tr>
<td>Draw and explain circuit diagrams of electrical sub-circuits (a luminair circuit, a socket outlets circuit, a geyser circuit, a stove circuit (both single and 3-phase connection)).</td>
<td></td>
</tr>
<tr>
<td>Interpret electrical drawings by identifying common drawing symbols and abbreviations used in electrical and electronic drawings and know how components are cross-referenced (e.g. relay contacts appearing in another circuit diagram).</td>
<td></td>
</tr>
<tr>
<td>Explain methods to join electric cords, conductors and electric cables.</td>
<td></td>
</tr>
<tr>
<td>Know the purpose and design of wire ways.</td>
<td></td>
</tr>
<tr>
<td>Explain analogue measuring instrument design (moving coil, moving iron, dynamometer type).</td>
<td></td>
</tr>
<tr>
<td>Sketch and explain how measuring instruments are inserted into circuits (ammeter and voltmeter (with/without shunt and multiplier resistors and current and potential transformers), wattmeter (single and 3-phase connections), frequency meter, megger and tong tester).</td>
<td></td>
</tr>
<tr>
<td>Understand fundamentals of electricity (p.d., e.m.f., current flow (conventional and electron), resistance, inductive and capacitive reactance, impedance, power (true, reactive and apparent), power factor and energy. Use R.M.S, D.C and instantaneous values where applicable.</td>
<td></td>
</tr>
<tr>
<td>Do calculations using Ohms Law, the power and energy</td>
<td></td>
</tr>
</tbody>
</table>
Topic 2: Generation and supply of electricity

SUBJECT OUTCOME

2.1 Understand the principles behind the generation and supply of electricity.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>The basic principles behind the generation and supply of electricity is understood.</td>
<td>Explain how a single phase and 3-phase A.C supply is generated, highlighting the advantages and disadvantages of the different systems.</td>
</tr>
<tr>
<td>Understand electric power distribution practices.</td>
<td>State disadvantages of single phase distribution.</td>
</tr>
<tr>
<td>State advantages of 3-phase distribution.</td>
<td>Explain the layout and different sections comprising electric distribution networks (from the generating plant (supplier) to the end user (client)).</td>
</tr>
<tr>
<td>Sketch and explain the design of materials and components used in overhead lines (max. 11000V) (poles, struts, ties, pin-, strain- and suspension-insulators, steel cored conductors, lightning arrestors, transformers, fuses, switchgear and the draw-vice).</td>
<td></td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Theoretical assessment

- Assess the student on the achievement of the learning outcomes listed.

Topic 3: Earthing and load balancing

SUBJECT OUTCOME

3.1 Discuss the theory behind and also the importance of earthing of electrical appliances, installations and distribution systems.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earthing is understood.</td>
<td>Define nomenclature such as earth continuity conductors, earth bar, earthing lead, earth electrode and earth fault.</td>
</tr>
<tr>
<td>Understand earthing practices.</td>
<td>State regulations regarding protection.</td>
</tr>
<tr>
<td>State regulations regarding protection.</td>
<td>Draw a circuit to electrically earth an installation.</td>
</tr>
<tr>
<td>Perform tests on installations to ensure that the installation conforms to earthing regulations.</td>
<td></td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Theoretical assessment

- Assess the student on the achievement of the learning outcomes listed.
Electrical Principles and Practice

National Certificates (Vocational)

Subject Outcome

3.2 Do calculations to implement load balancing in a three-phase supplied system.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load balancing is understood.</td>
<td>Understand and interpret load-balancing case studies.</td>
</tr>
<tr>
<td>Calculate and sketch possible solutions.</td>
<td></td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Theoretical assessment
- Assess the student on the achievement of the learning outcomes listed.

Practical assessment
- Student identifies earthing practices in domestic houses, factories, office buildings and shopping centres and reports on the compliance or non-compliance of said establishment.

Subject Outcome

4.1 Understand transformers.

Range: Includes but is not limited to;
Power factor and transformer efficiency in calculations (single and 3-phase).

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transformers are understood.</td>
<td>Understand the following: Why and where transformers are used, transformer turns ratio, rating, core, laminated plates, secondary isolated from primary, eddy currents, electromagnetic interference.</td>
</tr>
<tr>
<td>Explain how transformers are constructed, their operating principle and do basic turns ratio calculations.</td>
<td></td>
</tr>
<tr>
<td>Draw circuit diagrams of star/delta connected transformers and calculate phase and line values and turns ratios.</td>
<td></td>
</tr>
<tr>
<td>Draw a typical switchyard circuit (transformers, switchgear and protection).</td>
<td></td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Theoretical assessment
- Assess the Student on the achievement of the learning outcomes listed.

Practical assessment
- Student does calculations for typical case scenarios. Include power factor and transformer efficiency in calculations.
 Do calculations for single and 3-phase transformers.
Topic 5: Motor/generator/alternator principles

SUBJECT OUTCOME

5.1 Explain motor/generator/alternator principles and the different characteristics of the different types of motors/generators/alternators (A.C and D.C).

Range: Includes but is not limited to:
- a. Separately excited, shunt excited, series, and compound machines
- b. The effect of a load on the machine
- c. Speed control of dc motors and the reversal of direction of motors
- d. The induction, the split-phase, and the universal motor
- e. Direct on line starting
- f. Reduced voltage starting (manual and automatic star-delta, manual auto-transformer and resistance starting.)

ASSESSMENT STANDARD

- Motor, generator and alternator principles are understood.

LEARNING OUTCOME

- Understand the following: Nomenclature such as rotor, stator, armature, yoke, poles and pole shoes, commutator, slip rings, brushes and brush holders, field coils, back emf, induction, squirrel cage, speed and slip, synchronous speed, split-phase, armature reaction, brush shifting, interpoles and compensating windings, rotating magnetic field.
- Understand the operating principles.
- Understand the basic construction.
- Understand the connection diagrams and identify the type of machine.
- Draw and explain their characteristic curves (load characteristic).
- Draw a circuit diagram and explain the operating principle of the face-plate starter and associated protection devices.
- Draw circuit diagrams and explain the operating principles of starter circuits for ac motors.
- Explain tests that can be conducted to test electric machines.
- Draw and explain circuit diagrams of electric machinery circuits (D.C. motor and generator, universal motor, squirrel cage motor, single and 3-phase machines) (include starter and protection circuitry and direction reversal).

ASSESSMENT TASKS OR ACTIVITIES

Theoretical assessment
- Assess the Student on the achievement of the learning outcomes listed.

Practical assessment
- Student conducts tests on electric machines.
- Tests do not include load tests.
Topic 6: Illumination

SUBJECT OUTCOME

6.1 Understand illumination and lamp circuits.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>The fundamentals of illumination and lamp circuits is understood.</td>
<td>Understand nomenclature such as light intensity, lux or lumens, stroboscopic effect, incandescence.</td>
</tr>
<tr>
<td>Explain the operating principle of light dimmers.</td>
<td>Sketch and explain the design and principle of operation of lamps (incandescent, tungsten halogen, Hg- and Na-vapour, and fluorescent).</td>
</tr>
<tr>
<td>Sketch and explain the circuitry needed to start and operate lamps (incandescent, tungsten halogen, Hg- and Na-vapour, and fluorescent).</td>
<td>Discuss the cost, colour emitted, efficiencies and life expectancy of different lamp types and chose the best lamp for the application.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Theoretical assessment
- Assess the Student on the achievement of the learning outcomes listed.

Practical assessment
- Student does small, stand alone projects in a laboratory or workshop environment.
4 SPECIFICATION FOR EXTERNAL ASSESSMENT IN ELECTRICAL PRINCIPLES AND PRACTICE – LEVEL 4

4.1 Integrated summative assessment task (ISAT)
A compulsory component of the external assessment (ESASS) is the integrated summative assessment task (ISAT). The integrated summative assessment task (ISAT) draws on the students’ cumulative learning achieved throughout the year. The task requires integrated application of competence and is executed and recorded in compliance with assessment conditions.

Two approaches to the integrated summative assessment task (ISAT) may be as follows:

- The students are assigned a task at the beginning of the year which they will have to complete in phases during the year to obtain an assessment mark. A final assessment is made at the end of the year when the task is complete.

OR

- Students achieve the competencies during the year but the competencies are assessed cumulatively in a single assessment or examination session at the end of the year.

The integrated summative assessment task (ISAT) is set by an externally appointed examiner and is conveyed to colleges in the first quarter of the year.

The integrated assessment approach enables students to be assessed in more than one subject with the same integrated summative assessment task (ISAT).

4.2 National Examination
A national examination is conducted annually in October or November by means of a paper(s) set and moderated externally. The following distribution of cognitive application is suggested:

<table>
<thead>
<tr>
<th>LEVEL 4</th>
<th>KNOWLEDGE AND COMPREHENSION</th>
<th>APPLICATION</th>
<th>ANALYSIS, SYNTHESIS AND EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 - 60%</td>
<td>30 -40%</td>
<td>0 - 10%</td>
<td></td>
</tr>
</tbody>
</table>