NATIONAL CERTIFICATES (VOCATIONAL)

ASSESSMENT GUIDELINES

PROFESSIONAL ENGINEERING PRACTICE
NQF Level 4

September 2007
PROFESSIONAL ENGINEERING PRACTICE – LEVEL 4

CONTENTS

SECTION A: PURPOSE OF THE SUBJECT ASSESSMENT GUIDELINES

SECTION B: ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

1 Assessment in the National Certificates (Vocational)
2 Assessment framework for vocational qualifications
 2.1 Internal continuous assessment (ICASS)
 2.2 External summative assessment (ESASS)
3 Moderation of assessment
 3.1 Internal moderation
 3.2 External moderation
4 Period of validity of internal continuous assessment (ICASS)
5 Assessor requirements
6 Types of assessment
 6.1 Baseline assessment
 6.2 Diagnostic assessment
 6.3 Formative assessment
 6.4 Summative assessment
7 Planning assessment
 7.1 Collecting evidence
 7.2 Recording
 7.3 Reporting
8 Methods of assessment
9 Instruments and tools for collecting evidence
10 Tools for assessing student performance
11 Selecting and/or designing recording and reporting systems
12 Competence descriptions
13 Strategies for collecting evidence
 13.1 Record sheets
 13.2 Checklists

SECTION C: ASSESSMENT IN PROFESSIONAL ENGINEERING PRACTICE

1 Schedule of assessment
2 Recording and reporting
3 Internal assessment of Subject Outcomes in Professional Engineering Practice - Level 4
4 Specifications for external assessment in Professional Engineering Practice - Level 4
 4.1 Integrated summative assessment task (ISAT)
 4.2 National Examination
SECTION A: PURPOSE OF THE SUBJECT ASSESSMENT GUIDELINES

This document provides the lecturer with guidelines to develop and implement a coherent, integrated assessment system for professional Engineering Practice in the National Certificates (Vocational). It must be read with the National Policy Regarding Further Education and Training Programmes: Approval of the Documents, Policy for the National Certificates (Vocational) Qualifications at Levels 2 to 4 on the National Qualifications Framework (NQF). This assessment guideline will be used for National Qualifications Framework Levels 2-4.

This document explains the requirements for the internal and external subject assessment. The lecturer must use this document with the Subject Guidelines: Professional Engineering Practice to prepare for and deliver Professional Engineering Practice. Lecturers should use a variety of resources and apply a range of assessment skills in the setting, marking and recording of assessment tasks.

SECTION B: ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

1 ASSESSMENT IN THE NATIONAL CERTIFICATES (VOCATIONAL)

Assessment in the National Certificates (Vocational) is underpinned by the objectives of the National Qualifications Framework (NQF). These objectives are to:

- Create an integrated national framework for learning achievements.
- Facilitate access to and progression within education, training and career paths.
- Enhance the quality of education and training.
- Redress unfair discrimination and past imbalances and thereby accelerate employment opportunities.
- Contribute to the holistic development of the student by addressing:
 - social adjustment and responsibility;
 - moral accountability and ethical work orientation;
 - economic participation; and
 - nation-building.

The principles that drive these objectives are:

- **Integration**
 To adopt a unified approach to education and training that will strengthen the human resources development capacity of the nation.

- **Relevance**
 To be dynamic and responsive to national development needs.

- **Credibility**
 To demonstrate national and international value and recognition of qualification and acquired competencies and skills.

- **Coherence**
 To work within a consistent framework of principles and certification.

- **Flexibility**
 To allow for creativity and resourcefulness when achieving Learning Outcomes, to cater for different learning styles and use a range of assessment methods, instruments and techniques.

- **Participation**
 To enable stakeholders to participate in setting standards and co-ordinating the achievement of the qualification.

- **Access**
 To address barriers to learning at each level to facilitate students’ progress.
• **Progression**
 To ensure that the qualification framework permits individuals to move through the levels of the national qualification via different, appropriate combinations of the components of the delivery system.

• **Portability**
 To enable students to transfer credits of qualifications from one learning institution and/or employer to another institution or employer.

• **Articulation**
 To allow for vertical and horizontal mobility in the education system when accredited pre-requisites have been successfully completed.

• **Recognition of Prior Learning**
 To grant credits for a unit of learning following an assessment or if a student possesses the capabilities specified in the outcomes statement.

• **Validity of assessments**
 To ensure assessment covers a broad range of knowledge, skills, values and attitudes (SKVAs) needed to demonstrate applied competency. This is achieved through:
 - clearly stating the outcome to be assessed;
 - selecting the appropriate or suitable evidence;
 - matching the evidence with a compatible or appropriate method of assessment; and
 - selecting and constructing an instrument(s) of assessment.

• **Reliability**
 To assure assessment practices are consistent so that the same result or judgment is arrived at if the assessment is replicated in the same context. This demands consistency in the interpretation of evidence; therefore, careful monitoring of assessment is vital.

• **Fairness and transparency**
 To verify that no assessment process or method(s) hinders or unfairly advantages any student. The following could constitute unfairness in assessment:
 - Inequality of opportunities, resources or teaching and learning approaches
 - Bias based on ethnicity, race, gender, age, disability or social class
 - Lack of clarity regarding Learning Outcome being assessed
 - Comparison of students’ work with other students, based on learning styles and language

• **Practicability and cost-effectiveness**
 To integrate assessment practices within an outcomes-based education and training system and strive for cost and time-effective assessment.

2 ASSESSMENT FRAMEWORK FOR VOCATIONAL QUALIFICATIONS

The assessment structure for the National Certificates (Vocational) qualification is as follows:

2.1 **Internal continuous assessment (ICASS)**
Knowledge, skills values, and attitudes (SKVAs) are assessed throughout the year using assessment instruments such as projects, tests, assignments, investigations, role-play and case studies. The internal continuous assessment (ICASS) practical component is undertaken in a real workplace, a workshop or a “Structured Environment”. This component is moderated internally and externally quality assured by Umalusi. All internal continuous assessment (ICASS) evidence is kept in a Portfolio of Evidence (PoE) and must be readily available for monitoring, moderation and verification purposes.

2.2 **External summative assessment (ESASS)**
The external summative assessment is either a single or a set of written papers set to the requirements of the Subject Learning Outcomes. The Department of Education administers the theoretical component according to relevant assessment policies.
A compulsory component of external summative assessment (ESASS) is the integrated summative assessment task (ISAT). This assessment task draws on the students’ cumulative learning throughout the year. The task requires integrated application of competence and is executed under strict assessment conditions. The task should take place in a simulated or “Structured Environment”. The integrated summative assessment task (ISAT) is the most significant test of students’ ability to apply acquired knowledge.

The integrated assessment approach allows students to be assessed in more than one subject with the same integrated summative assessment task (ISAT).

External summative assessments will be conducted annually between October and December, with provision made for supplementary sittings.

3 MODERATION OF ASSESSMENT

3.1 Internal moderation

Assessment must be moderated according to the internal moderation policy of the Further Education and Training (FET) college. Internal college moderation is a continuous process. The moderator’s involvement starts with the planning of assessment methods and instruments and follows with continuous collaboration with and support to the assessors. Internal moderation creates common understanding of Assessment Standards and maintains these across vocational programmes.

3.2 External moderation

External moderation is conducted by the Department of Education, Umalusi and, where relevant, an Education and Training Quality Assurance (ETQA) body according to South African Qualifications Authority (SAQA) and Umalusi standards and requirements.

The external moderator:
- monitors and evaluates the standard of all summative assessments;
- maintains standards by exercising appropriate influence and control over assessors;
- ensures proper procedures are followed;
- ensures summative integrated assessments are correctly administered;
- observes a minimum sample of ten (10) to twenty-five (25) percent of summative assessments;
- gives written feedback to the relevant quality assuror; and
- moderates in case of a dispute between an assessor and a student.

Policy on inclusive education requires that assessment procedures be customised for students who experience barriers to learning, and supported to enable these students to achieve their maximum potential.

4 PERIOD OF VALIDITY OF INTERNAL CONTINUOUS ASSESSMENT (ICASS)

The period of validity of the internal continuous assessment mark is determined by the National Policy on the Conduct, Administration and Management of the Assessment of the National Certificates (Vocational).

The internal continuous assessment (ICASS) must be re-submitted with each examination enrolment for which it constitutes a component.

5 ASSESSOR REQUIREMENTS

Assessors must be subject specialists and should ideally be declared competent against the standards set by the ETDP SETA. If the lecturer conducting the assessments has not been declared a competent assessor, an assessor who has been declared competent may be appointed to oversee the assessment process to ensure the quality and integrity of assessments.

6 TYPES OF ASSESSMENT

Assessment benefits the student and the lecturer. It informs students about their progress and helps lecturers make informed decisions at different stages of the learning process. Depending on the intended purpose, different types of assessment can be used.
6.1 Baseline assessment
At the beginning of a level or learning experience, baseline assessment establishes the knowledge, skills, values and attitudes (SKVAs) that students bring to the classroom. This knowledge assists lecturers to plan learning programmes and learning activities.

6.2 Diagnostic assessment
This assessment diagnoses the nature and causes of learning barriers experienced by specific students. It is followed by guidance, appropriate support and intervention strategies. This type of assessment is useful to make referrals for students requiring specialist help.

6.3 Formative assessment
This assessment monitors and supports teaching and learning. It determines student strengths and weaknesses and provides feedback on progress. It determines if a student is ready for summative assessment.

6.4 Summative assessment
This type of assessment gives an overall picture of student progress at a given time. It determines whether the student is sufficiently competent to progress to the next level.

7 PLANNING ASSESSMENT
An assessment plan should cover three main processes:

7.1 Collecting evidence
The assessment plan indicates which Subject Outcomes and Assessment Standards will be assessed, what assessment method or activity will be used and when this assessment will be conducted.

7.2 Recording
Recording refers to the assessment instruments or tools with which the assessment will be captured or recorded. Therefore, appropriate assessment instruments must be developed or adapted.

7.3 Reporting
All the evidence is put together in a report to deliver a decision for the subject.

8 METHODS OF ASSESSMENT
Methods of assessment refer to who carries out the assessment and includes lecturer assessment, self-assessment, peer assessment and group assessment.

LECTURER ASSESSMENT	The lecturer assesses students’ performance against given criteria in different contexts, such as individual work, group work, etc.
SELF-ASSESSMENT	Students assess their own performance against given criteria in different contexts, such as individual work, group work, etc.
PEER ASSESSMENT	Students assess another student’s or group of students’ performance against given criteria in different contexts, such as individual work, group work, etc.
GROUP ASSESSMENT	Students assess the individual performance of other students within a group or the overall performance of a group of students against given criteria.

9 INSTRUMENTS AND TOOLS FOR COLLECTING EVIDENCE
All evidence collected for assessment purposes is kept or recorded in the student’s PoE.

The following table summarises a variety of methods and instruments for collecting evidence. A method and instrument is chosen to give students ample opportunity to demonstrate the Subject Outcome has been attained. This will only be possible if the chosen methods and instruments are appropriate for the target group and the Specific Outcome being assessed.
METHODS FOR COLLECTING EVIDENCE

<table>
<thead>
<tr>
<th>Observation-based (Less structured)</th>
<th>Task-based (Structured)</th>
<th>Test-based (More structured)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Observation</td>
<td>• Assignments or tasks</td>
<td>• Examinations</td>
</tr>
<tr>
<td>• Class questions</td>
<td>• Projects</td>
<td>• Class tests</td>
</tr>
<tr>
<td>• Lecturer, student, parent discussions</td>
<td>• Investigations or research</td>
<td>• Practical examinations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Oral tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Open-book tests</td>
</tr>
</tbody>
</table>

Assessment instruments

Assessment tools

Evidence

Open middle: Students produce the same evidence but in different ways.

Open end: Students use same process to achieve different results.

10 TOOLS FOR ASSESSING STUDENT PERFORMANCE

Rating scales are marking systems where a symbol (such as 1 to 7) or a mark (such as 5/10 or 50%) is defined in detail. The detail is as important as the coded score. Traditional marking, assessment and evaluation mostly used rating scales without details such as what was right or wrong, weak or strong, etc.

Task lists and checklists show the student what needs to be done. These consist of short statements describing the expected performance in a particular task. The statements on the checklist can be ticked off when the student has adequately achieved the criterion. Checklists and task lists are useful in peer or group assessment activities.

Rubrics are a hierarchy (graded levels) of criteria with benchmarks that describe the minimum level of acceptable performance or achievement for each criterion. Using rubrics is a different way of assessing and cannot be compared to tests. Each criterion described in the rubric must be assessed separately. Mainly two types of rubrics, namely holistic and analytical, are used.

11 SELECTING AND/OR DESIGNING RECORDING AND REPORTING SYSTEMS

The selection or design of recording and reporting systems depends on the purpose of recording and reporting student achievement. Why particular information is recorded and how it is recorded determine which instrument will be used.

Computer-based systems, for example spreadsheets, are cost and time effective. The recording system should be user-friendly and information should be easily accessed and retrieved.

12 COMPETENCE DESCRIPTIONS

All assessment should award marks to evaluate specific assessment tasks. However, marks should be awarded against rubrics and not be simply a total of ticks for right answers. Rubrics should explain the competence level descriptors for the skills, knowledge, values and attitudes (SKVAs) that a student must demonstrate to achieve each level of the rating scale.

When lecturers or assessors prepare an assessment task or question, they must ensure that the task or question addresses an aspect of a Subject Outcome. The relevant Assessment Standard must be used to create the rubric to assess the task or question. The descriptions must clearly indicate the minimum level of attainment for each category on the rating scale.
13 STRATEGIES FOR COLLECTING EVIDENCE
A number of different assessment instruments may be used to collect and record evidence. Examples of instruments that can be (adapted and) used in the classroom include:

13.1 Record sheets
The lecturer observes students working in a group. These observations are recorded in a summary table at the end of each project. The lecturer can design a record sheet to observe students’ interactive and problem-solving skills, attitudes towards group work and involvement in a group activity.

13.2 Checklists
Checklists should have clear categories to ensure that the objectives are effectively met. The categories should describe how the activities are evaluated and against what criteria they are evaluated. Space for comments is essential.

SECTION C: ASSESSMENT IN PROFESSIONAL ENGINEERING PRACTICE

1 SCHEDULE OF ASSESSMENT
At NQF levels 2, 3 and 4, lecturers will conduct assessments as well as develop a schedule of formal assessments that will be undertaken in the year. All three levels also have an external examination that accounts for 50 percent of the total mark. The marks allocated to assessment tasks completed during the year, kept or recorded in a PoE, account for the other 50 percent.

The PoE and the external assessment include practical and written components. The practical assessment in Materials Technology must, where necessary, be subjected to external moderation by Umalusi or an appropriate Education and Training Quality Assurance (ETQA) body, appointed by the Umalusi Council in terms of Section 28(2) of the General and Further Education and Training Quality Assurance Act, 2001 (Act No. 58 of 2001).

2 RECORDING AND REPORTING
Professional Engineering Practice, as is the case for all the other Vocational subjects, is assessed according to five levels of competence. The level descriptions are explained in the following table.

Scale of Achievement for the Vocational component

<table>
<thead>
<tr>
<th>RATING CODE</th>
<th>RATING</th>
<th>MARKS %</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Outstanding</td>
<td>80-100</td>
</tr>
<tr>
<td>4</td>
<td>Highly Competent</td>
<td>70-79</td>
</tr>
<tr>
<td>3</td>
<td>Competent</td>
<td>50-69</td>
</tr>
<tr>
<td>2</td>
<td>Not yet competent</td>
<td>40-49</td>
</tr>
<tr>
<td>1</td>
<td>Not achieved</td>
<td>0-39</td>
</tr>
</tbody>
</table>

The programme of assessment should be recorded in the Lecturer’s Portfolio of Assessment for each subject. The following at least should be included in the Lecturer’s Assessment Portfolio:

- A contents page
- The formal schedule of assessment
- The requirements for each assessment task
- The tools used for each assessment task
- Recording instrument(s) for each assessment task
- A mark sheet and report for each assessment task

The college must standardise these documents.
The student’s PoE must include at least:

- A contents page
- The assessment tasks according to the assessment schedule
- The assessment tools or instruments for the task
- A record of the marks (and comments) achieved for each task

Where a task cannot be contained as evidence in the PoE, its exact location must be recorded and it must be readily available for moderation purposes.
ASSESSMENT OF PROFESSIONAL ENGINEERING PRACTICE

LEVEL 4
Topic 1: The engineering profession

SUBJECT OUTCOME

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
</table>
| • Determine and execute engineering responsibilities to the environment through the prevention of pollution. | • Make responsible decisions related to pollution and the environment, taking consideration of the impact on:
 - Air contamination through exhaust processes.
 - Water pollution of rivers, dams and underground sources.
 - Crop spraying and its effect on humans, vegetation, water sources, animals and bird life.
 • Explain the effects and consequences of dumping waste, with particular reference to:
 - Chemical disposals.
 - Atomic disposals.
 - Location of the dumping site with reference to various factors:
 Range: Direct path of watershed catchment areas, nearby dams, rivers, and streams, land slides. |

ASSESSMENT TASKS OR ACTIVITIES

Written test and exercises.

SUBJECT OUTCOME

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
</table>
| • Responsibilities towards employers, employees and clients are identified. | • Interpret employee’s state of mind.
 Range: Observation of work output level, quality of work, communication with colleagues, character change and absenteeism.
 • Demonstrate concern for employees through personal contact and addressing various matters.
 Range: Job satisfaction, hobbies and sport interests, family life and vision for the future.
 • Perform after sales service with clientele.
 Range: Periodic telephone contact, discussions about products and social drivers, etc i.e.:
 - Luncheons.
 - Technology and/or product conferences.
 - Sports events.
 - Sponsored and other events and activities. |

ASSESSMENT TASKS OR ACTIVITIES

Test/case study.
SUBJECT OUTCOME

1.3 Identify ethical engineering responsibilities to the environment.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
</table>
| • Possible environmental problems resulting from engineering are identified and solutions recommended. | • Illustrate responsible thinking with respect to environmental impact, with reference to different factors. *Range: Defacing the landscape and, traffic congestion resulting from heavy-duty vehicle movement, destruction and/or construction of roads, noise disturbance from factories, mining and air traffic.*
| • Suitable positioning of industrial areas | *Range: Wind direction and seasonal changes, eco-sensitive areas, health effects on communities.* |

ASSESSMENT TASKS OR ACTIVITIES

- Environmentally-based project.

SUBJECT OUTCOME

1.4 Explain the role of engineering professional bodies.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
</table>
| • Characteristics, roles and responsibilities of professional bodies are explained. | • Define the characteristics of engineering professional bodies.
| • Define the responsibilities of professional bodies. | • Explain the characteristics of engineering professional bodies.
| • Explain the responsibilities and roles of professional bodies. |

ASSESSMENT TASKS OR ACTIVITIES

- Written tests.

Topic 2: The function, philosophy and process of engineering design

SUBJECT OUTCOME

2.1 Discuss the main steps in the engineering design process.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
</table>
| • The main steps in the design process are identified and listed, and the effects of non-compliance are discussed. | • Identify the main steps in the design process.
| • Discuss the main steps in the design process. | • Discuss the effects of not complying with acceptable design process. |

ASSESSMENT TASKS OR ACTIVITIES

- Exercise in engineering design.
SUBJECT OUTCOME

2.2 Discuss the nature and roles of different types of models used in the engineering design process.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different models used in engineering design process are identified, investigated and interpreted.</td>
<td>Identify the different models used in engineering design process.</td>
</tr>
<tr>
<td></td>
<td>Investigate the nature of each model used in the engineering design process.</td>
</tr>
<tr>
<td></td>
<td>Discuss the role of each model used in the engineering design process.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

Different models are evaluated.

Subject 3: Communication in engineering

SUBJECT OUTCOME

3.1 Interpret sketches, graphs and drawings of engineering structures and mechanisms.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different sketch, drawing or graph features are identified and presented.</td>
<td>Identify the different features from a given sketch, drawing or graph.</td>
</tr>
<tr>
<td></td>
<td>Make a presentation to demonstrate understanding of the given sketch, drawing or graph.</td>
</tr>
<tr>
<td>Small-scale models are constructed to show understanding of the sketch.</td>
<td>Use engineering drawings and diagrams to construct small-scale models to demonstrate understanding of the given drawing.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

- Written test.
- Presentation on sketch.
- Make a model.

SUBJECT OUTCOME

3.2 Design system representation.

Range: Block diagrams, flow charts and/or logical networks.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Different system representations are identified, discussed and designed using:</td>
<td>Identify different system representations in manufacturing, engineering and technology.</td>
</tr>
<tr>
<td>A block diagram.</td>
<td>Discuss and design the block diagram as a system representation in manufacturing, engineering and technology.</td>
</tr>
<tr>
<td>A flow chart.</td>
<td>Discuss and design the flow chart as a system representation in manufacturing, engineering and technology.</td>
</tr>
<tr>
<td>Logical network.</td>
<td>Discuss and design the logical networks as a system representation in manufacturing, engineering and technology.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

An inclusive project to practice these three methods.
SUBJECT OUTCOME

3.3. Compile a technical report.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Approaches to compiling a technical report are identified.</td>
<td>• Identify different approaches to compiling a technical report.</td>
</tr>
<tr>
<td>• The need for reporting in various stages of a project is considered and explained.</td>
<td>• Consider and explain the necessity for reporting in various stages of a project.</td>
</tr>
<tr>
<td>• A report is structured, compiled and presented.</td>
<td>• Structure the content of a technical report.</td>
</tr>
<tr>
<td></td>
<td>• Compile a comprehensive technical report.</td>
</tr>
<tr>
<td></td>
<td>• Present a technical report.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

- Compile a report on data received.
- Present the report.

Topic 4: Computation

SUBJECT OUTCOME

4.1 Identify and explain different computer hardware devices and their functions in the engineering field.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Functions of memory and storage devices are explained.</td>
<td>• Discuss the principles of data processing.</td>
</tr>
<tr>
<td></td>
<td>• Identify the memory and storage devices and their functions in the engineering field.</td>
</tr>
<tr>
<td>• The difference between input and output devices are identified and discussed.</td>
<td>• Discuss the different input and output devices and explain their differences in engineering applications.</td>
</tr>
<tr>
<td></td>
<td>• Explain the operation of Arithmetic Logical unit of a computer.</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

- Group discussion and practical assignment.
- Exercises in the computer room using software applied to the engineering field.

SUBJECT OUTCOME

4.2 Compare different computer languages.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Computer languages and concepts of complex software systems are discussed, and simple in-line coding and structured programming are performed</td>
<td>• Discuss the concepts used in high and low level computer languages.</td>
</tr>
<tr>
<td></td>
<td>• Perform a simple in-line code in a high level language.</td>
</tr>
<tr>
<td></td>
<td>• Perform simple structured programming.</td>
</tr>
<tr>
<td></td>
<td>• Discuss the concepts of complex software systems</td>
</tr>
</tbody>
</table>

ASSESSMENT TASKS OR ACTIVITIES

A typed test of skill in software.
SUBJECT OUTCOME

4.3 Apply software tools to produce the desired outcomes.

<table>
<thead>
<tr>
<th>ASSESSMENT STANDARD</th>
<th>LEARNING OUTCOME</th>
</tr>
</thead>
</table>
| • Software tools are used to produce spreadsheets, graphics and drawings. | • Use software tools to produce spreadsheets.
• Use specialised software tools to produce graphics and drawings.
Range: Specialised software tools refer to but are not limited to CAD. |

ASSESSMENT TASKS OR ACTIVITIES

A typed test of skill in software.

4 SPECIFICATIONS FOR EXTERNAL ASSESSMENT IN PROFESSIONAL ENGINEERING PRACTICE - LEVEL 4

4.1 Integrated summative assessment task (ISAT)

A compulsory component of the external assessment (ESASS) is the integrated summative assessment task (ISAT). The integrated summative assessment task (ISAT) draws on the student’s cumulative learning achieved throughout the year. The task requires integrated application of competence and is executed and recorded in compliance with assessment conditions.

Two approaches to the integrated summative assessment task (ISAT) may be as follows:

- The students are assigned a task at the beginning of the year which they will have to complete in phases during the year to obtain an assessment mark. A final assessment is made at the end of the year when the task is completed.

OR
- Students achieve the competencies during the year but the competencies are assessed cumulatively in a single assessment or examination session at the end of the year.

The integrated summative assessment task (ISAT) is set by an externally appointed examiner and is conveyed to colleges in the first quarter of the year.

The integrated assessment approach enables students to be assessed in more than one subject with the same integrated summative assessment task (ISAT).

4.2 National Examination

A national examination is conducted annually in October or November by means of a paper(s) set and moderated externally. The following distribution of cognitive application is suggested:

<table>
<thead>
<tr>
<th>LEVEL 4</th>
<th>KNOWLEDGE AND COMPREHENSION</th>
<th>APPLICATION</th>
<th>ANALYSIS, SYNTHESIS AND EVALUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40%</td>
<td>30%</td>
<td>30%</td>
</tr>
</tbody>
</table>